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Abstract
Background and aims Plant-soil interactions are a cru-
cial component of ecosystem functioning. However,
most global change studies focus on plant communities,
with information on soil properties and performance
being scarce. Our goal was to assess the individual and
joint effect of habitat heterogeneity and three global
change drivers (fragmentation, loss of habitat quality
and climate change) on nutrient availability and soil
microbial activity in Mediterranean gypsum soils.

Methods We collected soil samples from an experimen-
tal field site from large/small fragments, with high/low
habitat quality, subjected to two levels of water avail-
ability (dry/mesic) and from two microhabitats (under
the canopy of shrubs and in the open). We analyzed
nutrient concentrations (C, N and P) and enzymatic
activities (ß-glucosidase, urease and acid phosphatase).
Results C, N, P content, ß-glucosidase, urease and
acid phosphatase activities were higher under the can-
opy than in the open and in high- than in poor- habitat
quality sites. These differences were exacerbated in
small fragments.
Conclusions The strong interdependence between plant
and soil was modulated by fragmentation in the Medi-
terranean gypsum soils studied. Drought did not exert a
direct negative effect on soil properties, although the
effect might arise under more intense drought or under
drought taking place at times of the year different from
those explored here. Results highlight the importance of
considering several drivers simultaneously to forecast
realistic ecosystem responses to global change.

Keywords Enzymatic activities . Global change .

Habitat quality . Fragmentation . Gypsum soil .

Mediterranean ecosystem

Introduction

Soil nutrient availability is one of the most important
factors influencing plant growth and ecosystem
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functioning (Lambers et al. 1998). The distribution of
nutrients in the soil is highly heterogeneous, which in
turn affects the structure and composition of plant
communities (Kruger 1979; Henkin et al. 1998).
Moreover, several studies have shown that soil hetero-
geneity can modulate the impact of global change
drivers on plant communities (Maestre and Reynolds
2006; Wacker et al. 2008). Soil nutrient heterogeneity
is also associated with microbial activity (Gallardo and
Schlesinger 1994), which in turn are responsible for
essential processes in the ecosystem such as energy
transformation, mineralization of plant litter and nutri-
ent cycling (Panikov 1999). In agreement with this,
recent studies have evidenced the importance of con-
sidering the below-aboveground interactions of the
biota to properly understand ecosystem functioning
(van der Putten et al. 2009; Kardol and Wardle 2010;
Garcia-Palacios et al. 2011).

Climatic conditions such as soil and air temperature
and water availability affect enzyme activity through
increased microbial growth and substrate availability
(Noy-Meir 1973; Parkinson and Coleman 1991). Sev-
eral studies have shown the importance of water avail-
ability for both microbial activity (Kramer and Green
2000; Li and Sarah 2003; Sardans and Penuelas 2005)
and soil nutrient availability (Jensen et al. 2003; Sardans
and Penuelas 2004). Consequently, changes in temper-
ature or precipitation promoted by climate change are
likely to alter nutrient cycles (Sardans and Penuelas
2007) and nutrient availability for plants (Michelsen et
al. 1999). This becomes especially important in Medi-
terranean ecosystems, where global circulations models
forecast reductions in precipitation and an increase in
maximum temperatures together with heavier storms
(Christensen 2007). Higher temperatures will further
decrease soil water availability and exacerbate the
effects of drought in these environments (Larcher
2000), while heavy storms increase nutrient loss by
lixiviation (Reynolds et al. 2004), and increased runoff
decreases water infiltration (Wainwright 1996).

Besides climate change, other global change drivers
such as land use changes and habitat fragmentation can
have dramatic effects on microbial and enzymatic activ-
ity and nutrient availability (Matias et al. 2010). Medi-
terranean ecosystems have been profoundly
transformed over centuries due to human activities such
as farming or agriculture (Valladares et al. 2008). These
have caused fragmentation and reductions in habitat
quality, important threats for biodiversity and natural

resources conservation (Lavorel et al. 1998; Foley et
al. 2005). Fragmentation decreases plant population size
and increases isolation, which can lead to lower genetic
variability and lower individual fitness and plant surviv-
al (Lienert 2004; Aguilar et al. 2006). As a consequence,
soils in fragmented landscapes may have reduced or-
ganic inputs and thus reduced nutrient availability and
cycling (Garcia et al. 2002). Reduced habitat quality has
often been considered a result of habitat fragmentation
(Harrison and Bruna 1999; Schleuning et al. 2008).
However, in agricultural landscapes, changes in habitat
quality may occur independently from fragmentation,
through factors such as runoff and fertilizer drift into
adjacent areas, intense ploughing, trampling or soil ero-
sion (Boutin and Jobin 1998; Matesanz et al. 2009).
Reduced habitat quality has also been associated to
decreased plant cover and biological soil crust, which
is translated into a meagre input of dead organic matter
and a consequent decrease of microbial activities (Zak et
al. 1994). However, the direct effect of habitat fragmen-
tation and reduced habitat quality on soils attributes and
performance remains largely unknown.

Interactions among global change drivers frequent-
ly generate non-additive effects, which in turn either
attenuate or exacerbate ecosystem responses to indi-
vidual drivers (Zavaleta et al. 2003; Matesanz et al.
2009). Several studies have addressed the interacting
effects of global change drivers on ecosystems, but
most of them have focussed on their influence on plant
communities (Sala et al. 2000; Maestre and Reynolds
2006; Matesanz et al. 2009), while information on
microbial communities and soil nutrient availability
is particularly scarce (Cookson et al. 2007; Casals et
al. 2009; Matias et al. 2010).

Our main goal was to assess the individual and joint
effects on nutrient availability and soil microbial activity
of three global change drivers that are especially impor-
tant for Mediterranean ecosystems: habitat fragmenta-
tion, loss of habitat quality and water availability.
Moreover, we assessed the influence of microhabitat
heterogeneity (i.e. open vs. the understory of woody
plants) and its interaction with these global change
drivers on the same microbial and soil properties. We
conducted a field experiment in a Mediterranean gyp-
sum steppe with plots following a factorial design for
the three drivers. Our working hypotheses were: (1)
Habitat fragmentation, loss of habitat quality and reduc-
tions in rainfall decrease plant survival and productivity
which are strongly related to soil attributes and
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performance (Garcia et al. 2002; Zak et al. 2003). This
in turn, will exert a negative effect on nutrient availabil-
ity and microbial activity of Mediterranean gypsum
soils; (2) synergistic interactions among drivers will
amplify the negative impact of loss of habitat quality
on soil nutrient availability (Matias et al. 2010); and (3)
nutrient availability and microbial activity will increase
under the canopy of shrubs in comparison with open
interspaces and this microhabitat heterogeneity will
modulate the influence of other global change drivers
as suggested on other plant communities (Reich et al.
2001; Maestre and Reynolds 2006).

Materials and methods

Study site

The study was carried out near Belinchón in central
Spain (745 m above sea level; 40° 03’ N, 3° 03’ O).
The landscape is composed by gypsum soil hills (av-
erage slope was 11.7±0.3°) with remnants of natural
vegetation interspersed in a matrix of dry-farm crops.
Natural vegetation is dominated by creeping and
cushion-like chamaephytes such as Centaurea hysso-
pifolia Vahl. (Compositae), Helianthemum squama-
tum (L.) Dum. Cours (Cistaceae), Lepidium
subulatum L. (Cruciferae), Thymus lacaitae Pau
(Labiatae) and Teucrium pumilum L. (Labiatae). Plant
cover is usually low (<30%), and bare soil areas are
often covered by a conspicuous biological soil crust,
dominated by specialised lichens (Martinez et al.
2006). The area has a Mediterranean semiarid climate,
with a mean annual precipitation of 433 mm, a pro-
nounced summer drought, and a mean annual temper-
ature of 13.8°C. The study was conducted over
2 years: 2005, which was the second driest year of
the 56-year series (298 mm annual precipitation), and
2006, also a drier-than-average year, with annual pre-
cipitation of 371 mm (see detailed precipitation data of
the study site in Online resource 1)

Experimental design and soil sampling

To test the effects of three global change drivers and
their interactions on soil features and performance and
to explore the effect of microhabitat, we conducted an
experiment with four controlled factors: fragmentation,
habitat quality, water availability and microhabitat. For

each factor two levels were selected: large (L) and small
(S) fragments, high (H) and poor (P) habitat quality,
mesic (M, watered plants) and dry (D, non watered
plants). Two microhabitats were considered for each
combination of factors, under the understory of C. hys-
sopifolia (U, Understory) and open areas near the target
plants (O, Open). We selected this plant species because
it is the largest and most abundant chamaephyte in the
local community.

To select the two levels of fragmentationwe identified
three small (area <1.5 ha) and three large (area >11 ha)
fragments of natural vegetation (six fragments total)
which were further characterized by measuring several
vegetation attributes such as percentage of soil covered
by plants, lichens and mosses, annual plants, perennial
plants, litter and bare soil (see Online resource 2). Within
each fragment, we randomly selected two plots of ca.
15×15 m of contrasting high- and poor-habitat quality
(12 plots in total) according to plant cover as an integra-
tive indicator of habitat suitability (see Matesanz et al.
2009 for a detailed characterisation of each habitat qual-
ity level). Each plot was further divided into two contig-
uous halves that were randomly assigned to onewatering
treatment. The irrigation experiment was conducted in
the spring (May and June) of 2005 and 2006, simulating
two different scenarios of water availability: non-
watered plants (dry treatment) and watered plants (mesic
treatment). Water was added to reach the median of the
long-term series (1948–2004) in each month (Fig. 1).
Plants were randomly selected within the mesic plot.
Irrigation was then applied at the plant-level and con-
sisted of adding 1 l of dechlorinated tap water per plant
and application time. A 50×50 cm (0.25 m2) rigid frame
was placed around each watered plant so that the entire
surface was watered and all the plants received the same
amount of water, independently of their size. Each water
application was equivalent to 4-mm rainfall events. Irri-
gation was performed at 5–6 days intervals. The non-
watered (dry treatment) plants received ambient precip-
itation (equivalent to future drier scenarios due to the
very dry spring conditions of the study years) and the
irrigated plants received ambient precipitation plus the
added water (equivalent to a typical year).

In July 2006, we randomly selected five plants per
irrigation treatment and we collected soil samples
from each microhabitat. The total number of soil sam-
ples was 240 (10 plants per plot x 12 plots x 2 micro-
habitats). We collected four sub-samples within the
perimeter where the irrigation treatment was carried
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out with a 6×6×10 cm metal soil core for each sub-
sample, which were thoroughly mixed afterwards.
Once in the laboratory, soil samples were sieved
(2 mm grain) and air dried.

Biochemical and microbiological analysis

Total nitrogen (N) and total phosphorous (P) contents
were determined by the Kjeldahl method (Radojevic
and Bashkin 1999). Each soil sample was digested in
96% sulphuric acid for 3 h at 415°C and nutrient
contents were determined through colorimetry by an
automatic wet chemistry analyzer (Skalar 4000 SAN
System, Segmented Flow Analyzer; Skalar, Breda,
The Netherlands). Total organic carbon (C) was deter-
mined by Walkley and Black method (1934) modified
by Yeomans and Bremmer (1989) by oxidation with
potassium dichromate in acid medium and evaluating
the excess of dichromate with 0.5 N ferrous ammoni-
um sulphate.

β-glucosidase and acid phosphatase activities were
estimated using Tabatabai method (1982), which de-
termined colorimetrically the amount of p-nitrophenol
produced from p-nitrophenyl- β-D-glucopyranoside,
and p-nitrophenyl-phosphate, respectively, after 1 h
of incubation at 37°C. The activities are expressed as
grams of p-nitrophenol per gram of soil and hour
(Moreno et al. 2003). Urease activity was determined
colorimetrically by Nannipieri method (1980) measur-
ing total ammonium produced from a buffered urea
solution.

Statistical analysis

The effects of the different fixed factors (fragmenta-
tion, habitat quality, water availability and microhab-
itat) on the dependent variables (total organic C, total
N, total P, β-glucosidase, urease and acid phosphatase
activity) were analyzed using a four-way nested
ANOVA model. The model included fragmentation
(F, 1 df), habitat quality (Q, 1 df), water availability
(W, 1 df) and microhabitat (MH, 1 df) as main fixed
factors. Each sampling point was considered as a
random factor nested within fragmentation level (sam-
pling point (F), 4 df). We tested main effects of these
fixed factors and also included all possible interactions
between them. When significant interactions between
two factors were found, we performed a one-way
ANOVA to test for significant effects of one factor

within each level of the second factor. Normality and
homogeneity of variance in the dependent variables
was tested prior to analyses by means of the
Kolmogorov-Smirnov and the Levene’s test. All sta-
tistical analyses were performed using Statistica 6.0
(StatSoft Inc., Tulsa, OK, USA).

Results

Soil nutrients

Total organic carbon, total N and total P were signif-
icantly higher in high quality habitats and under the
understory of C. hyssopifolia (Fig. 2, Table 1). Loss of
habitat quality had the strongest impact. Fragmenta-
tion and water availability had no significant direct
effects on total organic C, N and P.

We found significant interactions between factors
affecting all nutrients. The interaction between habitat
quality and fragmentation had a significant effect on
organic C (Table 1, Fig. 4a) and total N (Table 1,
Fig. 4b). Organic C was lower in small than in large
fragments in poor habitat quality plots (F08.319 p0
0.005), but not in high habitat quality plots (F00.299,
p00.586). Total N did not differ significantly between
large and small fragments neither in high habitat qual-
ity (F03.295, p00.072), nor in poor habitat quality
plots (F03.451, p00.066). The interaction between
habitat quality and microhabitat had a significant ef-
fect on total N (Table 1, Fig. 4c): total N did not differ
between open and understory in high habitat quality
plots (F03.237, p00.075), but it was significantly
lower in poor habitat quality plots (F021.875, p<
0.001). Finally, total P was affected by a significant
interaction between habitat quality and water avail-
ability (Table 1, Fig. 4d), but we did not find signifi-
cant differences between watering treatments within
levels of habitat quality (F00.340, p00.560; F0
4.248, p00.061 for high- and low-habitat quality,
respectively).

Soil enzymatic activity

β-glucosidase and acid phosphatase activities were
significantly affected by habitat quality and microhab-
itat, with habitat quality having the strongest impact
(Table 1, Fig. 3a, c). Urease activity was significantly
affected by microhabitat (Table 1, Fig. 3b). The
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activity of enzymes decreased in poor habitat quality
plots, and it was lower in the open than under the
understory (Table 1, Fig. 3). We found no significant
main effects of fragmentation and water availability on
ß- glucosidase, phosphatase and urease activity.

Phosphatase activity was significantly affected by the
interaction between habitat quality and water availabil-
ity (Table 1, Fig. 4e). Yet, we did not find significant
differences betweenwatering treatments within levels of
habitat quality (F01.513, p00.221; F04.141, p00.064,

Fig. 2 Soil nutrient content across treatments. a Total organic
C; b total N; c total P. Each half of a panel corresponds to data
from understory (left) and open (right) microhabitats. Values are
mean ± SE in each treatment. Different colours indicate signif-
icant differences between microhabitats (background color) and

between high and poor habitat quality (bar colours). Abbrevia-
tions are: H, high-habitat quality; P, poor-habitat quality; L,
large fragment; S, small fragment; M, mesic treatment (watered
plants); D, dry treatment (non-watered treatments)

Fig. 1 Irrigation experiment. May and June precipitation
medians (1948–2004 series) were used as a threshold for the
irrigation treatment. Plants in the dry treatment received ambient

precipitation, and plants in the mesic treatment received ambient
precipitation plus added water (through 4 mm events and up to
the median for the corresponding month)
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for high- and low-habitat quality, respectively). Urease
activity was also affected by the interaction between
habitat quality and fragmentation (Table 1, Fig. 4f):
the difference between large and small fragments
was greatest in poor habitat quality plots. Urease
activity was greater in small fragments, both under
poor (F07.227, p00.008) and under high habitat
quality (F028.861, p<0.001).

Discussion

Effects of habitat quality and habitat heterogeneity

As expected, total organic carbon, N and P, β-
glucosidase and acid phosphatase activities were sig-
nificantly reduced in open interspaces and in low
quality habitat sites. The relative influence of fragmen-
tation, water availability and habitat quality was dif-
ferent with a maximum impact associated with habitat
degradation. The reduction of aboveground plant pro-
ductivity in poor quality habitats underlies reduced
organic C inputs, the main energy source for hetero-
trophic microbial communities (Zak et al. 2003; Allen
and Schlesinger 2004). This result agrees with

previous studies showing that microbial community
composition and function depend directly on plant
cover and soil organic matter content (Zak et al.
1994; Garcia et al. 2002). Limited nutrient input also
explains the decrease in N and P content and conse-
quent decrease in β-glucosidase and phosphatase ac-
tivities. These results suggest that plant abundance
significantly affects soil microorganisms and the eco-
system processes they mediate, like nutrient cycling
(Schlesinger and Pilmanis 1998; Stephan et al. 2000;
Tilman et al. 2001; Zak et al. 2003). Given that soil
nutrient deficiencies limit plant growth (Henkin et al.
1998; Fenner 2001; Sardans and Penuelas 2004), we
can expect reduced enzymatic activity to indirectly
affect plant growth, highlighting the strong interde-
pendence between plant and microbe soil communi-
ties, which involves positive feedbacks.

Microhabitat heterogeneity played an important
role for soil properties, affecting both nutrient content
and soil enzymatic activities. Higher enzymatic activ-
ity underneath the canopy of C. hyssopifolia and in
high-quality sites may be due to the larger microbial
and root biomass densities beneath the plants, which
entails a faster nutrient intake and stimulates the syn-
thesis and excretion of enzymes (Garcia et al. 2002;

Table 1 ANOVA results (F and p-values) for the soil nutrient contents and soil enzymatic activity. N0240 soil samples. NS: not
significant. See results section for direction of the effects. Significant effects (p<0.05 are indicated in bold)

Total organic C Total N Total P β- glucosidase Phosphatase Urease

F p F p F p F p F p F p

Fragmentation (F) 0.561 NS 0.002 NS 0.324 NS 0.642 NS 3.214 NS 2.850 NS

Habitat quality (Q) 56.560 0.000 70.872 0.000 92.861 0.000 20.160 0.000 4.575 0.034 0.045 NS

Water availability (W) 0.045 NS 0.259 NS 1.257 NS 1.005 NS 0.668 NS 2.482 NS

Microhabitat (MH) 19.750 0.000 23.658 0.000 7.870 0.005 65.711 0.000 26.369 0.000 20.809 0.000

Q × F 6.056 0.015 9.393 0.002 0.347 NS 3.505 NS 2.554 NS 4.214 0.041

F × W 2.121 NS 1.865 NS 0.576 NS 3.260 NS 1.642 NS 1.085 NS

Q × W 3.315 NS 2.902 NS 4.735 0.031 0.251 NS 6.214 0.013 0.169 NS

F × MH 0.109 NS 0.000 NS 0.290 NS 0.011 NS 0.361 NS 0.286 NS

Q × MH 0.008 NS 4.024 0.046 2.216 NS 0.597 NS 0.122 NS 0.153 NS

W × MH 0.949 NS 0.098 NS 0.284 NS 0.610 NS 0.462 NS 2.436 NS

F × Q × W 0.214 NS 0.596 NS 3.195 NS 0.664 NS 0.594 NS 0.431 NS

F × Q × MH 0.132 NS 0.088 NS 0.000 NS 0.342 NS 2.435 NS 1.796 NS

F × W × MH 0.048 NS 0.175 NS 0.032 NS 0.048 NS 0.102 NS 0.003 NS

Q × W × MH 0.075 NS 0.039 NS 0.238 NS 0.017 NS 0.176 NS 0.158 NS

F × Q × W × MH 1.467 NS 0.071 NS 0.354 NS 0.005 NS 0.099 NS 0.262 NS

Sampling point(F) 4.291 0.002 10.440 0.000 85.840 NS 13.757 0.000 1.622 NS 14.997 0.000
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Allen and Schlesinger 2004). Moreover, greater levels
of plant production (e.g. litter production) also stimu-
late microbial enzymatic activity (Zak et al. 2003;
Allen and Schlesinger 2004). ß-glucosidase, urease
and acid phosphatase are hydrolases involved in the
decomposition of complex compounds. In particular,
ß-glucosidase has a key role in the C cycle, it is
responsible for the transformation of large chains of
carbohydrates into assimilable sugars (Eivazi and
Zakaria 1993). Thus a decrease in ß-glucosidase ac-
tivity has negative effects on the activity of other
enzymes (Sardans and Penuelas 2005). These findings
together with the patchy distribution of plants in Med-
iterranean gypsum soils support the idea that plant
cover clumps in dry ecosystems function as resource
islands with milder living conditions arranged in a
barren matrix of bare soil (Maestre and Cortina
2002; Goberna et al. 2007).

The lack of direct effect of water availability could
be explained by the different time scale at which this
driver can impact on ecosystem properties. For exam-
ple, in our study case, the 2 years of manipulative
changes in water availability contrasts with the long
term processes associated with loss of habitat quality.
Nutrient availability usually shows a lagged response
to climatic variations, sometimes taking even decades
to respond to environmental variation in the case of
so-called slow variables (Reynolds et al. 2007). How-
ever, enzymatic activities are rapid soil functional
surrogates and therefore short-term effects of our wa-
ter treatment can be expected. We did not detect these
effects for the different water treatments due to our
experiment mimicking either a mild or too short
drought or a drought not affecting soils at the most
responsive time of the year; it must be noted, however,
that our drought simulation was guided both in extent

Fig. 3 Soil enzyme activity across treatments. a β-Glucosidase;
b Urease; c Phosphatase. Values are mean ± SE in each treat-
ment. Each half of a panel corresponds to data from understory
and open microhabitats. Different colours indicate significant
differences between microhabitats (background color) and

between high and poor habitat quality (bar color). Abbreviations
are: H, high-habitat quality; P, poor-habitat quality; L, large
fragment; S, small fragment; M, mesic treatment (watered
plants); D, dry treatment (non-watered treatments). See text for
details

Plant Soil (2012) 358:213–223 219

Author's personal copy



and timing by climate change scenarios and not by the
responsiveness of soil biota. This explanation is sup-
ported by results from other studies showing that
drought significantly decreased soil enzymatic activity
when more intense rainfall reductions were simulated
(Sardans and Penuelas 2005) or when long-term rain-
fall variations were explored (Li and Sarah 2003).
Likewise, fragmentation did not have a significant
direct effect on any of the response variables. Accord-
ing to the literature, microbial communities are, in
general, not sensitive to habitat fragmentation and
habitat size (Rantalainen et al. 2005 and 2008). How-
ever, this does not mean that fragmentation is irrele-
vant for soil functioning. We found that fragmentation
indirectly affected soil performance (e.g. the effects of
loss of habitat quality on nutrient availability were
exacerbated in small fragments). Therefore, studying
the effect of habitat fragmentation on soil features and

performance is critical, especially in combination with
other global change drivers.

Interactive effects of global change drivers

As hypothesised, habitat quality, fragmentation and
water availability interactively affected nutrient
availability and microbial activity of Mediterranean
gypsum soils (Sala et al. 2000; Brook et al. 2008;
Matesanz et al. 2009; Pias et al. 2010). First of
all, we found that the negative impact of habitat
quality loss on total organic C and total N was
exacerbated in small fragments, which is relevant
to predict the final outcome of land degradation on
ecosystem functioning since, both drivers usually act
together (Schleuning et al. 2008). Second, we found that
the reduction of total N from high- to poor- habitat
quality sites was greater in open areas than under the

Fig. 4 Significant interac-
tions between Habitat Qual-
ity and global change
drivers (Fragmentation, Wa-
ter availability and Micro-
habitat). Values are mean ±
SE in each treatment.
Graphs only show signifi-
cant interactions between
factors. An asterisk indi-
cates significant differences
(at p<0.05) between levels
of a factor. Abbreviations
are: H, high-habitat quality;
P, poor-habitat quality
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understory of C. hyssopifolia. This result agrees with
other studies showing that microhabitat heterogeneity
modulates the impact of global change drivers such as
loss of habitat quality (Maestre and Reynolds 2006).
Furthermore, given that soil nutrient heterogeneity
exerts a strong influence on the development of plant
individuals and communities (Hodge et al. 2000; Day et
al. 2003), we can expect ecological processes mediated
by environmental heterogeneity (such as plant distribu-
tion or plant-plant interactions) to be indirectly affected
by habitat quality loss. Finally, we found an interaction
between habitat quality and water availability. Contrary
to our expectations, we did not find significant differ-
ences in total P and phosphatase activity between water-
ing treatments. Our results contrast with other studies
showing that enzymatic activity is correlated with soil
water availability in semiarid (Kramer and Green 2000)
and dry Mediterranean soils (Li and Sarah 2003; Sardans
and Penuelas 2004, 2005).

Fragmentation affects plant survival due to de-
creased genetic variation and increased inbreeding
(Ellstrand and Elam 1993; Fischer et al. 2003). This
has been also suggested by Matesanz et al. (2009) in a
previous study in the same system, where the interac-
tion between habitat quality and fragmentation affect-
ed survival and relative growth of C. hyssopifolia.
This reduction in plant survival, and therefore in plant
cover, reduces organic matter content in the soil and
could, in turn, affects soil microbial activity, in small
fragments. According to these results, fragmentation
did not have a significant direct effect on soils features
and performance, but it modulated the effect of habitat
quality through synergistic interactions having an in-
direct effect on soil properties mediated by plant cover
decline.

Conclusions

Our results highlight the importance of considering
several drivers simultaneously to forecast realistic eco-
system responses to global change impacts (Sala et al.
2000; Matesanz et al. 2009). Each driver operates on
different time scales: year to year change for water
availability versus decades for habitat quality loss and
fragmentation. This different time scale of the drivers
could explain the greater effect of habitat quality on
soils properties, which could be exacerbated by the
interactive effect of habitat fragmentation over a long

time scale. Moreover, there are feedbacks between
plant and microbial activity so cumulative effects of
drivers affecting plant productivity and microbial ac-
tivity and interactions among them can be expected in
the long-term and could accelerate the degradation of
Mediterranean gypsum habitats.
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